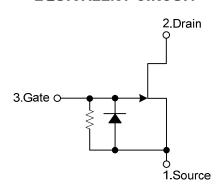


UTC UNISONIC TECHNOLOGIES CO., LTD

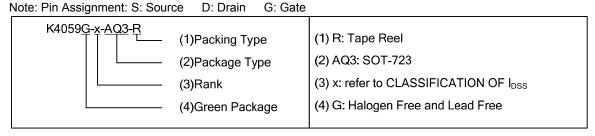
K4059 **Preliminary** N-CHANNEL JFET

FIELD EFFECT TRANSISTOR **SILICON N CHANNEL** JUNCTION TYPE

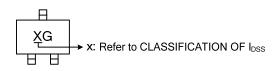

DESCRIPTION

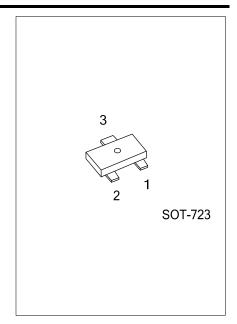
The UTC K4059 is an N-channel JFET, it uses UTC's advanced technology to provide customers with low input capacitance and low forward transfer admittance.

FEATURES


- * Low forward transfer admittance
- * Low input capacitance

EQUIVALENT CIRCUIT




ORDERING INFORMATION

Ordering Number	Dookogo	Pin Assignment			Dooking	
Ordering Number	Package	1	2	3	Packing	
K4059G-x-AQ3-R	SOT-723	S	D	G	Tape Reel	

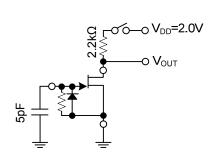
MARKING

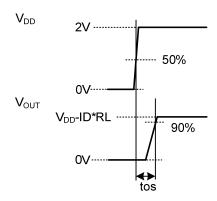
www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C ,unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Gate-Drain Voltage	V_{GDO}	-20	V
Gate-Current	I_G	10	mA
Drain Power Dissipation (T _A =25°C)	P_{D}	100	mW
Junction Temperature	TJ	125	°C
Storage Temperature Range	T _{STG}	-55~125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ ELECTRICAL CHARACTERISTICS (T_A=25°C ,unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	I _{DSS}		K4059-A	140		240	μA
Drain Current		V_{GS} =0, V_{DS} =2 V	K4059-B	210		350	μΑ
			K4059-C	320		500	μΑ
Drain Current	I _D	V_{DD} =2V, R_L =2.2k Ω , C_g =5pF	K4059-A	125		260	μΑ
			K4059-B	190		370	μΑ
			K4059-C	290		500	μΑ
Gate-Drain Voltage	$V_{(BR)GDO}$	I _G =-10μA		-20			V
Gate-Source Cut-Off Voltage	V _{GS (OFF)}	$V_{DS}=2V$, $I_D=1\mu A$		-0.1		-1.0	V
Forward Transfer Admittance	Y _{fs}	V _{DS} =2V, V _{GS} =0V		1.35	1.85		mS
Input Capacitance	C _{ISS}	V _{DS} =2V, V _{GS} =0, f=1MHz			4.0		pF
		$V_{DD}=2V,R_L=2.2k\Omega$	K4059-A	-1.2	+0.9		dB
Voltage Gain	G∨	C _g =5pF, f=1kHz,	K4059-B	-0.2	+1.4		dB
		V _{IN} =100mV	K4059-C	+0.5	+1.8		dB
Delta Voltage Gain	$\Delta G_{V(f)}$	V_{DD} =2V, R _L =2.2k Ω , C _g =5pF, f=1kHz~100Hz, V _{IN} =100mV			0	-1	dB
	$\Delta G_{V(V)}$	$V_{DD}=2V\sim1.5V,R_L=2.2k\Omega$	K4059-A		-0.6	-1.1	dB
Delta Voltage Gain		C _g =5pF, f=1kHz,	K4059-B		-0.8	-1.7	dB
		V _{IN} =100mV	K4059-C		-1.4	-3.2	dB
		V_{DD} =2V, R_L =1k Ω ,	K4059-A		33	75	mV
Noise Voltage		C_g =10pF, G_V =80dB,	K4059-B		38	80	mV
		A-Curve Filter	K4059-C		42	90	mV
		V_{DD} =2V, R_L =2.2k Ω ,	K4059-A		1.3		%
Total Harmonic Distortion	THD	C _g =5pF, f=1kHz,	K4059-B		0.6		%
		V _{IN} =50mV	K4059-C		0.1		%
Time Output Stability	tos	V_{DD} =2V, R_L =2.2k Ω , C_g =5p	F		100	200	ms

■ CLASSIFICATION OF I_{DSS}

	RANK	А	В	С		
Ī	RANGE	140-240	210-350	320-500		

■ TEST CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.